案例分类1
案例分类2

热文 卷积神经网络入门案例轻松实现花朵分类(2)

  • 发布时间:2022-06-27 02:15:46
  • 浏览次数:2次

  热文 卷积神经网络入门案例轻松实现花朵分类(2)常见卷积神经网络(CNN),主要由几个 卷积层Conv2D 和 池化层MaxPooling2D 层组成。卷积层与池化层的叠加实现对输入数据的特征提取,最后连接全连接层实现分类。

  花朵数据集中的图片,形状是 (180, 180, 3),我们可以在声明第一层时将形状赋值给参数 input_shape 。

  该模型由三个卷积块组成,每个卷积块中包括2D卷积层+最大池化层。最后有一个全连接层,有128个单元,可以通过relu激活功能激活该层。

  这里我们输入准备好的训练集数据(包括图像、对应的标签),测试集的数据(包括图像、对应的标签),模型一共训练10次。

  通常loss越小越好,对了解释下什么是loss;简单来说是 模型预测值 和 真实值 的相差的值,反映模型预测的结果和真实值的相差程度;通常准确度accuracy 越高,模型效果越好。

  从图中可以看出,训练精度和验证精度相差很大,模型仅在验证集上获得了约60%的精度。

  训练精度随时间增长,而验证精度在训练过程中停滞在60%左右。训练和验证准确性之间的准确性差异很明显,这是过拟合的标志。

  可能过拟合出现的原因 :当训练示例数量很少时,像这次的只有3000多张图片,该模型有时会从训练示例中的噪音或不必要的细节中学习,从而模型在新示例上的性能产生负面影响。

  模型将过度拟合训练数据,在训练集上达到较高的准确性,但在未见的数据(测试集)上得到比较低的准确性;模型的“泛化能力”不足。

  我们训练模型的主要目的,也是希望模型在未见数据的预测上能有较高的准确性;解决过拟合问题是比较重要的。

  使用更完整的训练数据,数据集应涵盖模型应处理的所有输入范围。仅当涉及新的有趣案例时,其他数据才有用。

  比如:在训练集的花朵图片都是近距离拍摄的,测试集的花朵有部分是远距离拍摄,训练出来的模型,自然在测试集的准确度不高了;如果一开始在训练集也包含部分远距离的花朵图片,那么模型在测试集时准确度会较高,基本和训练集的准确度接近。

  使用正规化等技术,这些限制了模型可以存储的信息的数量和类型。如果一个网络只能记住少量的模式,优化过程将迫使它专注于最突出的模式,这些模式更有可能很好地概括。

  简化神经网络结构,如果训练集比较小,网络结构又十分复杂,使得模型过度拟合训练数据,这时需要考虑简化模型了。减少一些神经元数量,或减少一些网络层。

  通过对已有的训练集图片 随机转换(反转、旋转、缩放等),来生成其它训练数据。这有助于将模型暴露在数据的更多方面,并更好地概括。

  *博客内容为网友个人发布,仅代表博主个人观点,如有侵权请联系工作人员删除。

公司地址:山东省临沂市沂蒙国际财富中心

Copyright © 2020 凯时首页 版权所有

ICP备********号-1